58 research outputs found

    Estimating rodent population abundance using early climatic predictors

    Get PDF
    Climate might directly or indirectly affect the population dynamics of several rodent species including Apodemus flavicollis, a very common forest small mammal and an important reservoir for several emerging zoonotic pathogens. We thus investigated how climatic data alone might be useful to predict rodent population dynamics. We used rodent data gathered through a long-term monitoring effort carried out for 17 years (2000–2017) using a capture-mark-recapture method in northern Italy. Temperature and precipitation data were obtained from a weather station close to the study area. Linear models were implemented to assess how mice density was associated with weather conditions considering various time lags. We found that warmer summers 2 years before sampling were positively related to A. flavicollis annual average population densities. Conversely, precipitation occurring the autumn 1 year before sampling negatively influenced mice abundance. To the best of our knowledge, this is one of the first attempts at investigating how rodent abundance is associated with climatic conditions in the central European region of the Alps. Our results highlight important correlations, which eventually might be used for estimating risk of transmission of rodent-borne zoonotic pathogen

    First Record of Hepatozoon spp. in Alpine Wild Rodents: Implications and Perspectives for Transmission Dynamics across the Food Web

    Get PDF
    Among the Apicomplexa parasites, Hepatozoon spp. have been mainly studied in domestic animals and peri-urban areas. The epidemiology of Hepatozoon spp. is poorly investigated in natural systems and wild hosts because of their scarce veterinary and economic relevance. For most habitats, the occurrence of these parasites is unknown, despite their high ecosystemic role. To fill this gap for alpine small mammals, we applied molecular PCR-based methods and sequencing to determine the Hepatozoon spp. in 830 ear samples from 11 small mammal species (i.e., Apodemus, Myodes, Chionomys, Microtus, Crocidura and Sorex genera) live-trapped during a cross-sectional study along an altitudinal gradient in the North-Eastern Italian Alps. We detected Hepatozoon spp. with an overall prevalence of 35.9%. Two species ranging from 500 m a.s.l. to 2500 m a.s.l. were the most infected: My. glareolus, followed by Apodemus spp. Additionally, we detected the parasite for the first time in another alpine species: C. nivalis at 2000–2500 m a.s.l. Our findings suggest that several rodent species maintain Hepatozoon spp. along the alpine altitudinal gradient of habitats. The transmission pathway of this group of parasites and their role within the alpine mammal community need further investigation, especially in consideration of the rapidly occurring environmental and climatic changes.First Record of Hepatozoon spp. in Alpine Wild Rodents: Implications and Perspectives for Transmission Dynamics across the Food WebpublishedVersio

    Mycobacterium microti at the environment and wildlife interface

    Get PDF
    10openInternationalItalian coauthor/editorAn unexpected high presence of Mycobacterium microti in wild boar in Northern Italy (Garda Lake) has been reported since 2003, but the factors contributing to the maintenance of this pathogen are still unclear. In this study, we investigated the presence of M. microti in wild rodents and in water and soil samples collected at wild boar aggregation areas, such as watering holes, with the aim of clarifying their role in M. microti transmission. In total, 8 out of 120 captured animals tested positive for the Mycobacterium tuberculosis complex (MTBC) as assessed by real-time PCR, and six samples were confirmed to be M. microti. A strain with a genetic profile similar to those previously isolated in wild boars in the same area was isolated from one sample. Of the 20 water and 19 mud samples, 3 and 1, respectively, tested positive for the presence of MTBC, and spacer oligotype SB0118 (vole type) was detected in one sample. Our study suggests that wild rodents, in particular Apodemus sylvaticus, Microtus sp. and Apodemus flavicollis, play roles in the maintenance of M. microti infections in wild boar through ingestion or by contact with either infected excreta or a contaminated environment, such as at animal aggregation sitesopenTagliapietra, V.; Boniotti, M.B.; Mangeli, A.; Karaman, I.; Alborali, G.; Chiari, M.; D’Incau, M.; Zanoni, M.; Rizzoli, A.; Pacciarini, M.L.Tagliapietra, V.; Boniotti, M.B.; Mangeli, A.; Karaman, I.; Alborali, G.; Chiari, M.; D’Incau, M.; Zanoni, M.; Rizzoli, A.; Pacciarini, M.L

    Prevalence and genetic variability of Anaplasma phagocytophilum in wild rodents from the Italian alps

    Get PDF
    Background: Human granulocytic anaplasmosis is a zoonotic bacterial disease with increasing relevance for public health in Europe. The understanding of its sylvatic cycle and Identification of competent reservoir hosts are essential for improving disease risk models and planning preventative measures. Results: In 2012 we collected single ear biopsy punches from 964 live-trapped rodents in the Province of Trento, Italy. Genetic screening for Anaplasma phagocytophilum (AP) was carried out by PCR amplification of a fragment of the 16S rRNA gene. Fifty-two (5.4%) samples tested positive: 49/245 (20%) from the bank vole (Myodes glareolus) and 3/685 (0.4%) samples collected from the yellow-necked mouse (Apodemus flavicollis). From these 52 positive samples, we generated 38 groEL and 39 msp4 sequences. Phylogenetic analysis confirmed the existence of a distinct rodent strain of AP. Conclusions: Our results confirm the circulation of a specific strain of AP in rodents in our study area; moreover, they provide further evidence of the marginal role of A. flavicollis compared to M. glareolus as a reservoir host for this pathogen

    High habitat richness reduces the risk of tick-borne encephalitis in Europe: a multi-scale study

    Get PDF
    Background The natural transmission cycle of tick-borne encephalitis (TBE) virus is enhanced by complex interactions between ticks and key hosts strongly connected to habitat characteristics. The diversity of wildlife host species and their relative abundance is known to affect transmission of tick-borne diseases. Therefore, in the current context of global biodiversity loss, we explored the relationship between habitat richness and the pattern of human TBE cases in Europe to assess biodiversity's role in disease risk mitigation. Methods We assessed human TBE case distribution across 879 European regions using official epidemiological data reported to The European Surveillance System (TESSy) between 2017 and 2021 from 15 countries. We explored the relationship between TBE presence and the habitat richness index (HRI1) by means of binomial regression. We validated our findings at local scale using data collected between 2017 and 2021 in 227 municipalities located in Trento and Belluno provinces, two known TBE foci in northern Italy. Findings Our results showed a significant parabolic effect of HRI on the probability of presence of human TBE cases in the European regions included in our dataset, and a significant, negative effect of HRI on the local presence of TBE in northern Italy. At both spatial scales, TBE risk decreases in areas with higher values of HRI. Interpretation To our knowledge, no efforts have yet been made to explore the relationship between biodiversity and TBE risk, probably due to the scarcity of high-resolution, large-scale data about the abundance or density of critical host species. Hence, in this study we considered habitat richness as proxy for vertebrate host diversity. The results suggest that in highly diverse habitats TBE risk decreases. Hence, biodiversity loss could enhance TBE risk for both humans and wildlife. This association is relevant to support the hypothesis that the maintenance of highly diverse ecosystems mitigates disease ris

    Identification of Ixodes ricinus blood meals using an automated protocol with high resolution melting analysis (HRMA) reveals the importance of domestic dogs as larval tick hosts in Italian alpine forests

    Get PDF
    Background In Europe, Ixodes ricinus L. is the main vector of a variety of zoonotic pathogens, acquired through blood meals taken once per stage from a vertebrate host. Defining the main tick hosts in a given area is important for planning public health interventions; however, until recently, no robust molecular methods existed for blood meal identification from questing ticks. Here we improved the time- and cost-effectiveness of an HRMA protocol for blood meal analysis and used it to identify blood meal sources of sheep tick larvae from Italian alpine forests. Methods Nine hundred questing nymphs were collected using blanket-dragging in 18 extensive forests and 12 forest patches close to rural villages in the Province of Trento. Total DNA was either extracted manually, with the QIAamp DNA Investigator kit, or automatically using the KingFisherâ„¢ Flex Magnetic Particle Processors (KingFisher Cell and Tissue DNA Kit). Host DNA was amplified with six independent host group real-time PCR reactions and identified by means of HRMA. Statistical analyses were performed in R to assess the variables important for achieving successful identification and to compare host use in the two types of forest. Results Automating DNA extraction improved time- and cost-effectiveness of the HRMA protocol, but identification success fell to 22.4% (KingFisherâ„¢) from 55.1% (QIAamp), with larval hosts identified in 215 of 848 questing nymphs; 23 mixed blood meals were noted. However, the list of hosts targeted by our primer sets was extended, improving the potential of the method. Host identification to species or genus level was possible for 137 and 102 blood meals, respectively. The most common hosts were Rodentia (28.9%) and, unexpectedly, Carnivora (28.4%), with domestic dogs accounting for 21.3% of all larval blood meals. Overall, Cetartiodactyla species fed 17.2% of larvae. Passeriformes (14.6%) fed a significantly higher proportion of larvae in forest patches (22.3%) than in extensive forest (9.6%), while Soricomorpha (10.9%) were more important hosts in extensive forest (15.2%) than in forest patches (4.3%). Conclusions The HRMA protocol for blood meal analysis is a valuable tool in the study of feeding ecology of sheep ticks, especially with the cost- and time- reductions introduced here. To our knowledge, we show for the first time that domestic dogs are important larval hosts in the Alps, which may have possible implications for tick-borne disease cycles in urbanized area

    Geographical Distribution and Genetic Diversity of Bank Vole Hepaciviruses in Europe

    Get PDF
    The development of new diagnostic methods resulted in the discovery of novel hepaciviruses in wild populations of the bank vole (Myodes glareolus, syn. Clethrionomys glareolus). The naturally infected voles demonstrate signs of hepatitis similar to those induced by hepatitis C virus (HCV) in humans. The aim of the present research was to investigate the geographical distribution of bank vole-associated hepaciviruses (BvHVs) and their genetic diversity in Europe. Real-time reverse transcription polymerase chain reaction (RT-qPCR) screening revealed BvHV RNA in 442 out of 1838 (24.0%) bank voles from nine European countries and in one of seven northern red-backed voles (Myodes rutilus, syn. Clethrionomys rutilus). BvHV RNA was not found in any other small mammal species (n = 23) tested here. Phylogenetic and isolation-by-distance analyses confirmed the occurrence of both BvHV species (Hepacivirus F and Hepacivirus J) and their sympatric occurrence at several trapping sites in two countries. The broad geographical distribution of BvHVs across Europe was associated with their presence in bank voles of different evolutionary lineages. The extensive geographical distribution and high levels of genetic diversity of BvHVs, as well as the high population fluctuations of bank voles and occasional commensalism in some parts of Europe warrant future studies on the zoonotic potential of BvHVs.Peer reviewe

    First Record of Hepatozoon spp. in Alpine Wild Rodents: Implications and Perspectives for Transmission Dynamics across the Food Web

    Get PDF
    Among the Apicomplexa parasites, Hepatozoon spp. have been mainly studied in domestic animals and peri-urban areas. The epidemiology of Hepatozoon spp. is poorly investigated in natural systems and wild hosts because of their scarce veterinary and economic relevance. For most habitats, the occurrence of these parasites is unknown, despite their high ecosystemic role. To fill this gap for alpine small mammals, we applied molecular PCR-based methods and sequencing to determine the Hepatozoon spp. in 830 ear samples from 11 small mammal species (i.e., Apodemus, Myodes, Chionomys, Microtus, Crocidura and Sorex genera) live-trapped during a cross-sectional study along an altitudinal gradient in the North-Eastern Italian Alps. We detected Hepatozoon spp. with an overall prevalence of 35.9%. Two species ranging from 500 m a.s.l. to 2500 m a.s.l. were the most infected: My. glareolus, followed by Apodemus spp. Additionally, we detected the parasite for the first time in another alpine species: C. nivalis at 2000–2500 m a.s.l. Our findings suggest that several rodent species maintain Hepatozoon spp. along the alpine altitudinal gradient of habitats. The transmission pathway of this group of parasites and their role within the alpine mammal community need further investigation, especially in consideration of the rapidly occurring environmental and climatic changes
    • …
    corecore